| Surname     | Centre<br>Number | Candidate<br>Number |
|-------------|------------------|---------------------|
| Other Names |                  | 0                   |



GCSE – NEW

3430U20-1

### **SCIENCE (Double Award)**

### Unit 2: CHEMISTRY 1 FOUNDATION TIER

### WEDNESDAY, 13 JUNE 2018 - MORNING

1 hour 15 minutes

| For Exa  | aminer's us     | e only          |
|----------|-----------------|-----------------|
| Question | Maximum<br>Mark | Mark<br>Awarded |
| 1.       | 7               |                 |
| 2.       | 9               |                 |
| 3.       | 7               |                 |
| 4.       | 6               |                 |
| 5.       | 10              |                 |
| 6.       | 6               |                 |
| 7.       | 8               |                 |
| 8.       | 7               |                 |
| Total    | 60              |                 |

#### ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

#### **INSTRUCTIONS TO CANDIDATES**

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

#### INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question 6 is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.









|                |                          |                           |                                      |                          | Exami |
|----------------|--------------------------|---------------------------|--------------------------------------|--------------------------|-------|
| <i>b)</i> Lith | ium reacts with oxy      | gen. The word e           | equation for th                      | is reaction is as follow | vs.   |
|                | lithi                    | um + oxygen -             | → lithium                            | oxide                    |       |
| (i)            | Name the <b>metal</b>    | in this equation.         |                                      |                          | [1]   |
| (ii)           | Name the <b>comp</b>     | ound in this equ          | lation.                              |                          | [1]   |
| (iii)          | Name a <b>reactan</b>    | <b>t</b> in this equatior | ۱.                                   |                          | [1]   |
| (iv)           | Lithium oxide cor        | ntains the ions L         | i <sup>+</sup> and O <sup>2–</sup> . |                          |       |
|                | <u>Underline</u> the for | mula of lithium c         | oxide.                               |                          | [1]   |
|                | LiO <sub>2</sub>         | 2LiO                      | Li <sub>2</sub> O                    | Li <sup>2</sup> O        |       |
|                |                          |                           |                                      |                          |       |
|                |                          |                           |                                      |                          | 7     |
|                |                          |                           |                                      |                          |       |
|                |                          |                           |                                      |                          |       |
|                |                          |                           |                                      |                          |       |
|                |                          |                           |                                      |                          |       |
|                |                          |                           |                                      |                          |       |
|                |                          |                           |                                      |                          |       |
|                |                          |                           |                                      |                          |       |
|                |                          |                           |                                      |                          |       |
|                |                          |                           |                                      |                          |       |
|                |                          |                           |                                      |                          |       |











Examiner

**3.** Magnesium, zinc and iron powders were each added separately to 100 cm<sup>3</sup> of copper(II) sulfate solution, to see which gave the greatest temperature change.



The temperature was recorded before and after each reaction. The results are shown in the table.

| Metal     | Temperature before<br>the reaction (°C) | Temperature after the<br>reaction (°C) | Temperature increase<br>(°C) |
|-----------|-----------------------------------------|----------------------------------------|------------------------------|
| zinc      | 20                                      |                                        | 14                           |
| magnesium | 19                                      | 39                                     | 20                           |
| iron      | 19                                      | 24                                     | 5                            |

(a) Calculate the temperature after the reaction with zinc.

[1]

Temperature = .....°C









|            | Pai<br>solut    | r of<br>tions                  | Appearance of the reactants                                                                           | Appearance when mixed                                            | Temperature change when mixed                           |                                  |
|------------|-----------------|--------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------|----------------------------------|
|            | ļ               | 4                              | two colourless solutions                                                                              | no change                                                        | increase                                                |                                  |
| -          | E               | 3                              | two colourless solutions                                                                              | bubbles form                                                     | increase                                                |                                  |
|            | C               | )                              | two colourless solutions                                                                              | white precipitate<br>forms                                       | no change                                               |                                  |
|            | [               | )                              | two colourless solutions                                                                              | no change                                                        | no change                                               |                                  |
|            |                 |                                |                                                                                                       |                                                                  |                                                         |                                  |
| (b)        | (i)             | The g                          | gas given off when pair<br>de gas.                                                                    | r <b>B</b> react is carbon diox                                  | kide. Describe the test for                             | r carbon<br>[1]                  |
| (b)        | (i)<br>         | The g<br>dioxi<br>One<br>carbo | gas given off when pair<br>de gas.<br>of the solutions in pai<br>onate.                               | r <b>B</b> react is carbon dio><br>ir <b>B</b> is sodium carbona | (ide. Describe the test for<br>ate. Give the formula of | r carbon<br>[1]<br>sodium<br>[1] |
| (b)<br>(c) | (i)<br><br>(ii) | The g<br>dioxi<br>One<br>carbo | gas given off when pair<br>de gas.<br>of the solutions in pai<br>onate.<br>:h pair of solutions is si | r <b>B</b> react is carbon dio<br>ir <b>B</b> is sodium carbon   | kide. Describe the test for<br>ate. Give the formula of | r carbon<br>[1]<br>sodium<br>[1] |



**BLANK PAGE** 

## PLEASE DO NOT WRITE ON THIS PAGE



3430U201 09

PMT





| (ii)<br>  | State which metal oxide is the <b>best</b> catalyst. G       | ive a reason for your answer.    | [1] <sup>only</sup> |
|-----------|--------------------------------------------------------------|----------------------------------|---------------------|
| <br>(iii) | After 120 seconds, the contents of each beake                | r were washed into a filter pape | r and               |
|           | Tick ( $\checkmark$ ) the box next to the statement which is | er was dried and weighed.        | [1]                 |
|           | the same mass of all catalysts is left over                  |                                  |                     |
|           | more zinc oxide is left over than lead oxide                 |                                  |                     |
|           | about 80% of the iron(III) oxide is left over                |                                  |                     |
|           | no lead oxide is left over                                   |                                  |                     |
|           |                                                              |                                  |                     |
|           |                                                              |                                  |                     |
|           |                                                              |                                  |                     |
|           |                                                              |                                  |                     |
|           |                                                              |                                  |                     |
|           |                                                              |                                  |                     |
|           |                                                              |                                  |                     |
|           |                                                              |                                  |                     |
|           |                                                              |                                  |                     |
|           |                                                              |                                  |                     |
|           |                                                              |                                  |                     |
|           |                                                              |                                  |                     |



(c) Exhaust gases from car engines contain harmful molecules, for example, carbon monoxide and nitrogen oxides. All cars are fitted with catalytic converters that split up these harmful molecules.

The catalysts are made from platinum (Pt) and palladium (Pd) or rhodium (Rh). A mesh structure is used that exposes the maximum surface area of catalyst to the exhaust gases, while also reducing the amount of catalyst required. Platinum, palladium and rhodium are extremely expensive.

As the exhaust gases from the engine pass over the catalysts, chemical reactions take place on their surfaces. The harmful molecules are broken up and converted into other gases that are "safe" to enter the air. These gases include carbon dioxide, nitrogen, oxygen and water.



110 °C. It takes nearly 30 minutes for these temperatures to be reached.

The table opposite shows the percentages of carbon monoxide and nitrogen oxides converted to safe gases by a catalytic converter at different temperatures.



Examiner only

| Temperature (°C) | Carbon monoxide converted (%) | Nitrogen oxides<br>converted (%) |
|------------------|-------------------------------|----------------------------------|
| 25               | 16                            | 25                               |
| 50               | 19                            | 28                               |
| 75               | 26                            | 35                               |
| 100              | 60                            | 72                               |
| 125              | 91                            | 92                               |
| 150              | 93                            | 94                               |
| 175              | 95                            | 95                               |
| 200              | 97                            | 98                               |

(i) Using your knowledge of particle theory suggest why a catalyst in mesh form works better than a lump of catalyst. [2]

(ii) Tick (✓) the box that best describes the adverse effect that gases leaving the exhaust would have on the environment. [1]

they have no effect on the environment

they deplete the ozone layer

they cause global warming



|       |                                                                                                                                                          | Examiner |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| (iii) | Tick ( $\checkmark$ ) the box that best describes the conversion of carbon monoxide and nitrogen oxides into "safe" gases at different temperatures. [1] | only     |
|       | equal amounts of carbon monoxide and nitrogen oxides are converted at every temperature                                                                  |          |
|       | more carbon monoxide is converted than nitrogen oxides up to 100 °C                                                                                      |          |
|       | more nitrogen oxides are converted than carbon monoxide<br>up to 100 °C                                                                                  |          |
|       | 40% more nitrogen oxides are converted than carbon monoxide up to 100°C                                                                                  |          |
| (iv)  | In your opinion how effective are catalytic converters? Explain your answer. [2]                                                                         |          |
|       |                                                                                                                                                          |          |
|       |                                                                                                                                                          |          |
| ••••• |                                                                                                                                                          |          |
|       |                                                                                                                                                          | 10       |
|       |                                                                                                                                                          |          |
|       |                                                                                                                                                          |          |
|       |                                                                                                                                                          |          |
|       |                                                                                                                                                          |          |
|       |                                                                                                                                                          |          |
|       |                                                                                                                                                          |          |
|       |                                                                                                                                                          |          |
|       |                                                                                                                                                          |          |
|       |                                                                                                                                                          |          |
|       |                                                                                                                                                          |          |
|       |                                                                                                                                                          | -        |



| 5. | Describe how respiration and photosynthesis keep the carbon dioxide and oxygen content of the atmosphere approximately constant. Discuss how human activity is threatening this balance. [6 QER] | Exar | niı<br>ıly |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|
|    |                                                                                                                                                                                                  |      |            |
|    |                                                                                                                                                                                                  |      |            |
|    |                                                                                                                                                                                                  |      |            |
|    |                                                                                                                                                                                                  |      |            |
|    |                                                                                                                                                                                                  |      |            |
|    |                                                                                                                                                                                                  |      |            |
|    |                                                                                                                                                                                                  |      |            |
|    |                                                                                                                                                                                                  | 6    | }          |
|    |                                                                                                                                                                                                  |      |            |
|    |                                                                                                                                                                                                  |      |            |
|    |                                                                                                                                                                                                  |      |            |
|    |                                                                                                                                                                                                  |      |            |
|    |                                                                                                                                                                                                  |      |            |

ppm = parts per million

7. Burning fossil fuels containing sulfur causes sulfur dioxide, SO<sub>2</sub>, to be released into the atmosphere.

The table shows sulfur dioxide emissions in the UK between 1950 and 2010.

| Year | Sulfur dioxide emissions (ppm) |
|------|--------------------------------|
| 1950 | 12.0                           |
| 1960 | 16.0                           |
| 1970 | 21.5                           |
| 1980 | 29.5                           |
| 1990 | 29.0                           |
| 2000 | 24.0                           |
| 2010 | 18.5                           |

(a) (i) On the grid plot the sulfur dioxide emissions against the year and draw a suitable line. [3]





|     | (ii)                      | Describe how sulfur dioxide emissions changed between 1950 and 2010.                                                                                                                                   | [2] Examiner<br>only |
|-----|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|     | <br>(iii)                 | The UK government introduced a regulation to reduce sulfur dioxide emissions<br>the 1980s. From your graph, state why it is difficult to decide exactly the year wh<br>the regulation came into force. | s in<br>ien<br>[1]   |
| (b) | Sulfu                     | ur dioxide can be converted to sulfur and water by reacting it with hydrogen sulfi                                                                                                                     | <br>                 |
|     | H <sub>2</sub> S.<br>Corr | nplete and balance the symbol equation for this reaction.                                                                                                                                              | [2]                  |
|     |                           | $SO_2 + H_2S \longrightarrow S + I_1$                                                                                                                                                                  |                      |
|     |                           |                                                                                                                                                                                                        | 8                    |
|     |                           |                                                                                                                                                                                                        |                      |
|     |                           |                                                                                                                                                                                                        |                      |
|     |                           |                                                                                                                                                                                                        |                      |
|     |                           |                                                                                                                                                                                                        |                      |
|     |                           |                                                                                                                                                                                                        |                      |
|     |                           |                                                                                                                                                                                                        | ver.                 |

| oxygen      219      183       0.0014       no         sulfur       115       445       2.0       no         selenium       221       685       4.8       semi-conductor         tellurium       450       988       6.2       semi-conductor         'a)       (i)       Describe the trend in the melting points of the Group 6 elements.       [1]         (ii)       Give the physical state of selenium at 400 °C. Give a reason for your choice.       [2]         (iii)       Explain why it is difficult to classify selenium as either a metal or a non-metal.       [1] |     | Element               | Melting point<br>(°C) | Boiling point<br>(°C) | Density<br>(g/cm <sup>3</sup> ) | Electrical conductor      |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------|-----------------------|-----------------------|---------------------------------|---------------------------|------------|
| sulfur       115       445       2.0       no         selenium       221       685       4.8       semi-conductor         tellurium       450       988       6.2       semi-conductor         'a)       (i)       Describe the trend in the melting points of the Group 6 elements.       [1]         (ii)       Give the physical state of selenium at 400 °C. Give a reason for your choice.       [2]         (iii)       Explain why it is difficult to classify selenium as either a metal or a non-metal.       [1]                                                        |     | oxygen                | -219                  | -183                  | 0.0014                          | no                        |            |
| selenium       221       685       4.8       semi-conductor         tellurium       450       988       6.2       semi-conductor         (i)       Describe the trend in the melting points of the Group 6 elements.       [1]         (ii)       Give the physical state of selenium at 400 °C. Give a reason for your choice.       [2]         (iii)       Explain why it is difficult to classify selenium as either a metal or a non-metal.       [1]                                                                                                                        |     | sulfur                | 115                   | 445                   | 2.0                             | no                        |            |
| tellurium       450       988       6.2       semi-conductor         (i)       Describe the trend in the melting points of the Group 6 elements.       [1]         (ii)       Give the physical state of selenium at 400 °C. Give a reason for your choice.       [2]         (iii)       Explain why it is difficult to classify selenium as either a metal or a non-metal.       [1]                                                                                                                                                                                            |     | selenium              | 221                   | 685                   | 4.8                             | semi-conductor            |            |
| <ul> <li>(i) Describe the trend in the melting points of the Group 6 elements. [1]</li> <li>(ii) Give the physical state of selenium at 400 °C. Give a reason for your choice. [2]</li> <li>(iii) Explain why it is difficult to classify selenium as either a metal or a non-metal. [1]</li> </ul>                                                                                                                                                                                                                                                                               |     | tellurium             | 450                   | 988                   | 6.2                             | semi-conductor            |            |
| (iii) Explain why it is difficult to classify selenium as either a metal or a non-metal. [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (a) | (i) Desc<br>(ii) Give | ribe the trend in     | the melting point     | s of the Group<br>400°C. Give a | o 6 elements.             | [1]<br>[2] |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | (iii) Evol            | ain why it is diffic  | ult to classify sel   | enium as eithe                  |                           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                       |                       |                       |                                 | er a metal or a non-metal | l. [1]     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                       |                       |                       |                                 | er a metal or a non-metal | I. [1]     |







# **BLANK PAGE**

### PLEASE DO NOT WRITE ON THIS PAGE



| Question number | Additional page, if required.<br>Write the question number(s) in the left-hand margin. |  |  |  |
|-----------------|----------------------------------------------------------------------------------------|--|--|--|
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |
|                 |                                                                                        |  |  |  |



# **BLANK PAGE**

## PLEASE DO NOT WRITE ON THIS PAGE



| POSITIVE IONS |                  | NEGATIVE IONS |                              |
|---------------|------------------|---------------|------------------------------|
| Name          | Formula          | Name          | Formula                      |
| aluminium     | Al <sup>3+</sup> | bromide       | Br <sup>-</sup>              |
| ammonium      | NH4 <sup>+</sup> | carbonate     | CO3 <sup>2-</sup>            |
| barium        | Ba <sup>2+</sup> | chloride      | CI⁻                          |
| calcium       | Ca <sup>2+</sup> | fluoride      | F <sup>−</sup>               |
| copper(II)    | Cu <sup>2+</sup> | hydroxide     | OH⁻                          |
| hydrogen      | H⁺               | iodide        | 17                           |
| iron(II)      | Fe <sup>2+</sup> | nitrate       | NO <sub>3</sub> <sup>-</sup> |
| iron(III)     | Fe <sup>3+</sup> | oxide         | 0 <sup>2-</sup>              |
| lithium       | Li <sup>+</sup>  | sulfate       | SO4 <sup>2-</sup>            |
| magnesium     | Mg <sup>2+</sup> |               |                              |
| nickel        | Ni <sup>2+</sup> |               |                              |
| potassium     | K <sup>+</sup>   |               |                              |
| silver        | Ag <sup>+</sup>  |               |                              |
| sodium        | Na <sup>+</sup>  |               |                              |
| zinc          | Zn <sup>2+</sup> |               |                              |



ຜ

0

~

S

4

က

THE PERIODIC TABLE Group

2

24



| Key                  |
|----------------------|
|                      |
|                      |
|                      |
|                      |
| Ac<br>Actinium<br>89 |
| Radium<br>88         |
| Francium<br>87       |
|                      |

